
WHITE PAPER

mbLay Architecture and Interface

This white paper gives an introduction into the embenatics foundation layer
mbLay. It describes the basic design principles of the architecture and presents
the interface that is provided to applications running on top of mbLay.

mbLay Architecture
The embenatics foundation layer mbLay consists of two sub-layers, the OS abstraction layer (OSAL)
and the embedded foundation layer (EFL). With this approach, we separate OS dependent
functionality from the mbLay core services. Because of this layered structure, we are able to port
mbLay to a new operating system without modification of the core functionality in EFL. This reduces
the development effort as well as the risk of a regression.

OS Abstraction Layer
The OS abstraction layer (OSAL) is designed to abstract from the underlying operating system. This
layer implements basic services that are needed to run the upper embedded foundation layer on top
of the supported operating system. In addition, it provides the embedded foundation layer with OS
dependent information about the status of the system and its resources. The upper OSAL interface
itself is operating system independent. Currently, embenatics provides OS abstraction layers for
Windows™, Linux™, QNX™, FreeRTOS™, ThreadX™, VxWorks™ and Nucleus™. Adaptations to
other operating system are available on request.

Embedded Foundation Layer
The embedded foundation layer (EFL) offers additional features that extend the pure OS
abstraction. These core features are the basis for many of the embenatics key functions. The entire
RPC based communication infrastructure uses the EFL services to establish the connections
between the communication threads. EFL is managing the creation of the system resources
according to the system resource description and boots the application without any additional
action required by the developer. The central resource description ensures that the implementation
of the application on top of mbLay does not need to be adapted if the resource configuration has
changed. mbLay also provides additional system services that support the user in designing, testing
and debugging the application. Therefore, mbLay includes a driver adaptation layer that supports
the efficient use of communication drivers for the test and diagnosis interface.
Finally, and essential for the user, EFL provides an interface for system service access to applications
running on top of mbLay. The EFL interface can be seen as a virtual operating system interface that

www.embenatics.com
© 2011

http://www.embenatics.com/

WHITE PAPERmbLay Architecture and Interface

is identical for all operating systems below mbLay. This generic approach ensures that the
implementation of an application based on mbLay does not need to be modified if the operating
system is exchanged.

Figure 1 mbLay within the Basic Software Architecture of an Embedded System

mbLay and its built-in communication infrastructure, together with the approach to centrally
describe a software system, supports the distribution of applications across multiple CPUs of multi-
core systems. Threads created in the mbLay environment that use mbLay system interfaces can be
moved between applications in multi-core systems. For further information on embenatics multi-
core support please see another document of this series of white papers [Designing Multi-Core
Applications].

mbLay Interface
The mbLay interface is used by any mbLay based application to request access to system resources.
mbLay-based applications will always use exactly the same interface regardless of the used
hardware platform or underlying operating system. Applications that use the mbLay interface to
access operating system services can therefore easily be ported to different environments.

The EFL interface provides the following functional blocks:

 Thread management

 Memory management, virtual memory pools

 Synchronization (semaphores, timers, event flags, critical sections)

 Communication exchange (RPC, messages queues, event flags)

 Handlers

 Logging

 Statistics (history, profiling)

Revision 1.2.0 Page 2 of 4

Hardware

BSP

3rd Party RTOS

OSAL
Drivers

EFL Interface

EFL Core
Application Software

Hardware

BSP

3rd Party RTOS

OSAL
Drivers

Application Software

m
bLay

++

EFL Interface

EFL Core

http://embenatics.com/files/white_paper_designing_multi_core_applications.pdf
http://embenatics.com/files/white_paper_designing_multi_core_applications.pdf

WHITE PAPERmbLay Architecture and Interface

Most of these functional blocks are self-explanatory, some require a more in-depth look which
follows below.

Virtual Memory Pools
Virtual memory pools provide the designer with a way to limit the memory consumption of a thread,
group of threads or application. They are specified by their size and two thresholds. The user can set
an upper and a lower allocation threshold and register a callback function that is called by EFL if the
allocation level exceeds the upper allocation threshold or falls below the lower allocation threshold.
Virtual memory pools help to segment memory management across the threads or thread pools of
an application to avoid excessive memory allocation for a single process.

Handlers
The handlers in embenatics mbLay are functions that are periodically called by mbLay. A dedicated
API function is provided that can be used by the designer to register a handler function to be called
at regular specific intervals. This feature is a convenient way to cyclically call a function without the
need for creating an OS thread or OS timer.

Logging
The logging feature of mbLay is responsible tracking the entire inter-process communication.
Additionally, mbLay provides the user with a set of macros for code instrumentation to generate
different classes of logging events that are sent to the embenatics logging tool mbLog via the test
and logging interface. For further information on logging itself and the logging tool mbLog see the
other two documents of this series of white papers [mbLay Logging] and [mbLog Logging and
Diagnosis Tool]. Filters can be applied to the logging classes in order to adjust the logging interface
load in case of a low bandwidth target connection.

Statistics
mbLay sends tracked system resource information via the test and logging interface. The status of
all threads can be monitored and thread properties like the current and maximum stack
consumption can be displayed. The CPU load can be displayed on a per thread basis. The current
and peak load of the system memory pools, as well as the memory pool load over the time, is
monitored and displayed in mbLog in order to support the developer during memory optimization
tasks. Finally, every memory pool access can be logged, which is of great advantage when
debugging out-of-memory conditions and memory leaks.

Conclusion
The embenatics foundation layer mbLay supports you in designing operating system independent
and reusable software. EFL provides a virtual system interface that is the same for every underlying
operating system. This ensures that an mbLay based application does not need to be adapted when
exchanging the OS. The built-in test and diagnostic functionalities help to reduce the development
time and increase the application software quality. The embenatics design methodology for keeping
the system configuration in a single description document, together with automatic resource
creation and start-up according to the system description document, keeps the effort for changes in
the resource configuration at a minimum.

Revision 1.2.0 Page 3 of 4

http://embenatics.com/files/white_paper_mblog_logging_and_diagnosis_tool.pdf
http://embenatics.com/files/white_paper_mblog_logging_and_diagnosis_tool.pdf
http://embenatics.com/files/white_paper_mblay_logging.pdf

WHITE PAPERmbLay Architecture and Interface

About Us
embenatics is a new company that entered the market in 2010. Our focus is on embedded software
development; as such we offer a software foundation layer and tool suite that supports your
development team in designing embedded software in an efficient, portable and maintainable way.
Based on our wide and varied experience in embedded systems design and development, we know
that future product requirements are hard to predict. Our goal is, therefore, to provide you with our
technology to make the design of your products as flexible and adaptable as possible. Our approach
allows your company to concentrate on the core competencies that differentiate your valuable
product from those of your competitors.

Before embenatics was founded, we worked with well-known international companies over two
decades and gained valuable experience in the embedded software business. While working as
software developers and architects, we encountered the various challenges of the embedded
software development life cycle. This wide range of experiences is the backbone of the software
foundation products that are offered by embenatics.

Our business philosophy is to establish a close and trustful relationship with our customers in order
to successfully promote and support projects over a long time period. For further information please
contact

Joachim Pilz
Beerenstraße 29

14163 Berlin

info@embenatics.com
www.embenatics.com

Phone +49 30 26 34 75 28
Mobile +49 176 96 98 46 07

Revision 1.2.0 Page 4 of 4

http://www.embenatics.com/

